Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress

Autor: Haiqiu Tan, Wenrui Zhen, Dongying Bai, Kexin Liu, Xianglong He, Koichi Ito, Yanhao Liu, Yuqian Li, Yi Zhang, Bingkun Zhang, Yanbo Ma
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Poultry Science, Vol 102, Iss 5, Pp 102623- (2023)
Druh dokumentu: article
ISSN: 0032-5791
DOI: 10.1016/j.psj.2023.102623
Popis: ABSTRACT: Immune stress exerts detrimental effects on growth performance and intestinal barrier function during intensive animal production with ensuing serious economic consequences. Chlorogenic acid (CGA) is used widely as a feed additive to improve the growth performance and intestinal health of poultry. However, the effects of dietary CGA supplementation on amelioration of the intestinal barrier impairment caused by immune stress in broilers are unknown. This study investigated the effects of CGA on growth performance, intestinal barrier function, and the inflammatory response in lipopolysaccharide (LPS) mediated immune-stressed broilers. Three hundred and twelve 1-day-old male Arbor Acres broilers were divided randomly into 4 groups with 6 replicates of thirteen broilers. The treatments included: i) saline group: broilers injected with saline and fed with basal diet; ii) LPS group: broilers injected with LPS and fed with basal diet; iii) CGA group: broilers injected with saline and feed supplemented with CGA; and iv) LPS+CGA group: broilers injected with LPS and feed supplemented with CGA. Animals in the LPS and LPS+CGA groups were injected intraperitoneally with an LPS solution prepared with saline from 14 d of age for 7 consecutive days, whereas broilers in the other groups were injected only with saline. LPS induced a decrease in feed intake of broilers during the stress period, but CGA effectively alleviated this decrease. Moreover, CGA inhibited the reduction of villus height and improved the ratio of villus height to crypt depth in the duodenum of broilers 24 and 72 h after LPS injection. In addition, dietary CGA supplementation significantly restored the expression of cation-selective and channel-forming Claudin2 protein 2 h after LPS injection in the ileum. LPS enhanced the expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the small intestine, but this enhancement was blocked by CGA supplementation. The expression of interleukin-10 (IL-10) increased with LPS injection and CGA promoted the production of IL-10. CGA addition downregulated the expression of intestinal interleukin-6 (IL-6) of broilers under normal rearing conditions. However, CGA supplementation upregulated the expression of IL-6 of broilers 72 h after LPS injection. The data demonstrate that dietary supplementation with CGA alleviates intestinal barrier damage and intestinal inflammation induced by LPS injection during immune stress thereby improving growth performance of broilers.
Databáze: Directory of Open Access Journals