Autor: |
Yuki Yoshimoto, Akiyoshi Uezumi, Madoka Ikemoto-Uezumi, Kaori Tanaka, Xinyi Yu, Tamaki Kurosawa, Shinsei Yambe, Kazumitsu Maehara, Yasuyuki Ohkawa, Yusuke Sotomaru, Chisa Shukunami |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Cell and Developmental Biology, Vol 10 (2022) |
Druh dokumentu: |
article |
ISSN: |
2296-634X |
DOI: |
10.3389/fcell.2022.780038 |
Popis: |
The musculoskeletal system is integrated by tendons that are characterized by the expression of scleraxis (Scx), a functionally important transcription factor. Here, we newly developed a tenocyte induction method using induced pluripotent stem cells established from ScxGFP transgenic mice by monitoring fluorescence, which reflects a dynamic differentiation process. Among several developmentally relevant factors, transforming growth factor-beta 2 (TGF-β2) was the most potent inducer for differentiation of tenomodulin-expressing mature tenocytes. Single-cell RNA sequencing (scRNA-seq) revealed 11 distinct clusters, including mature tenocyte population and tenogenic differentiation trajectory, which recapitulated the in vivo developmental process. Analysis of the scRNA-seq dataset highlighted the importance of retinoic acid (RA) as a regulatory pathway of tenogenic differentiation. RA signaling was shown to have inhibitory effects on entheseal chondrogenic differentiation as well as TGF-β2-dependent tenogenic/fibrochondrogenic differentiation. The collective findings provide a new opportunity for tendon research and further insight into the mechanistic understanding of the differentiation pathway to a tenogenic fate. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|