A New Diffusive Representation for Fractional Derivatives, Part II: Convergence Analysis of the Numerical Scheme
Autor: | Kai Diethelm |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematics, Vol 10, Iss 8, p 1245 (2022) |
Druh dokumentu: | article |
ISSN: | 2227-7390 |
DOI: | 10.3390/math10081245 |
Popis: | Recently, we have proposed a new diffusive representation for fractional derivatives and, based on this representation, suggested an algorithm for their numerical computation. From the construction of the algorithm, it is immediately evident that the method is fast and memory-efficient. Moreover, the method’s design is such that good convergence properties may be expected. In this paper, we commence a systematic investigation of these convergence properties. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |