A New Diffusive Representation for Fractional Derivatives, Part II: Convergence Analysis of the Numerical Scheme

Autor: Kai Diethelm
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 8, p 1245 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10081245
Popis: Recently, we have proposed a new diffusive representation for fractional derivatives and, based on this representation, suggested an algorithm for their numerical computation. From the construction of the algorithm, it is immediately evident that the method is fast and memory-efficient. Moreover, the method’s design is such that good convergence properties may be expected. In this paper, we commence a systematic investigation of these convergence properties.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje