Autor: |
Zariel I Johnson, Jacqueline D Jones, Angana Mukherjee, Dianxu Ren, Carol Feghali-Bostwick, Yvette P Conley, Cecelia C Yates |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 13, Iss 6, p e0199314 (2018) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0199314 |
Popis: |
Progression of systemic scleroderma (SSc), a chronic connective tissue disease that causes a fibrotic phenotype, is highly heterogeneous amongst patients and difficult to accurately diagnose. To meet this clinical need, we developed a novel three-layer classification model, which analyses gene expression profiles from SSc skin biopsies to diagnose SSc severity. Two SSc skin biopsy microarray datasets were obtained from Gene Expression Omnibus. The skin scores obtained from the original papers were used to further categorize the data into subgroups of low ( |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|