Autor: |
Peter Bloomingdale, Daniela Bumbaca-Yadav, Jonathan Sugam, Steve Grauer, Brad Smith, Svetlana Antonenko, Michael Judo, Glareh Azadi, Ka Lai Yee |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Pharmacology, Vol 13 (2022) |
Druh dokumentu: |
article |
ISSN: |
1663-9812 |
DOI: |
10.3389/fphar.2022.867457 |
Popis: |
Disrupted tau proteostasis and transneuronal spread is a pathological hallmark of Alzheimer’s disease. Neurodegenerative diseases remain an unmet medical need and novel disease modifying therapeutics are paramount. Our objective was to develop a mechanistic mathematical model to enhance our understanding of tau antibody pharmacokinetics and pharmacodynamics in animals and humans. A physiologically-based pharmacokinetic-pharmacodynamic (PBPK-PD) modeling approach was employed to support the preclinical development and clinical translation of therapeutic antibodies targeting tau for the treatment of Alzheimer’s disease. The pharmacokinetics of a tau antibody was evaluated in rat and non-human primate microdialysis studies. Model validation for humans was performed using publicly available clinical data for gosuranemab. In-silico analyses were performed to predict tau engagement in human brain for a range of tau antibody affinities and various dosing regimens. PBPK-PD modeling enabled a quantitative understanding for the relationship between dose, affinity, and target engagement, which supported lead candidate optimization and predictions of clinically efficacious dosing regimens. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|