Autor: |
Shuwei Chang, Qi Li, Baokang Huang, Wansheng Chen, Hexin Tan |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
BMC Plant Biology, Vol 23, Iss 1, Pp 1-12 (2023) |
Druh dokumentu: |
article |
ISSN: |
1471-2229 |
DOI: |
10.1186/s12870-023-04063-8 |
Popis: |
Abstract Background A. annua (also named Artemisia annua, sweet wormwood) is the main source of the anti-malarial drug artemisinin, which is synthesised and stored in its trichomes. Members of the basic Helix-Loop-Helix (bHLH) family of transcription factors (TFs) have been implicated in artemisinin biosynthesis in A. annua and in trichome development in other plant species. Results Here, we have systematically identified and characterised 226 putative bHLH TFs in A. annua. All of the proteins contain a HLH domain, 213 of which also contain the basic motif that mediates DNA binding of HLH dimers. Of these, 22 also contained a Myc domain that permits dimerisation with other families of TFs; only two proteins lacking the basic motif contained a Myc domain. Highly conserved GO annotations reflected the transcriptional regulatory role of the identified TFs, and suggested conserved roles in biological processes such as iron homeostasis, and guard cell and endosperm development. Expression analysis revealed that three genes (AabHLH80, AabHLH96, and AaMyc-bHLH3) exhibited spatiotemporal expression patterns similar to genes encoding key enzymes in artemisinin synthesis. Conclusions This comprehensive analysis of bHLH TFs provides a new resource to direct further analysis into key molecular mechanisms underlying and regulating artemisinin biosynthesis and trichome development, as well as other biological processes, in the key medicinal plant A. annua. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|