Soliton Molecules and Full Symmetry Groups to the KdV-Sawada-Kotera-Ramani Equation
Autor: | Na Xiong, Ya-Xuan Yu, Biao Li |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Advances in Mathematical Physics, Vol 2021 (2021) |
Druh dokumentu: | article |
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2021/5534996 |
Popis: | By N-soliton solutions and a velocity resonance mechanism, soliton molecules are constructed for the KdV-Sawada-Kotera-Ramani (KSKR) equation, which is used to simulate the resonances of solitons in one-dimensional space. An asymmetric soliton can be formed by adjusting the distance between two solitons of soliton molecule to small enough. The interactions among multiple soliton molecules for the equation are elastic. Then, full symmetry group is derived for the KSKR equation by the symmetry group direct method. From the full symmetry group, a general group invariant solution can be obtained from a known solution. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |