Dynamic prediction of hypoxemia risk at different time points based on preoperative and intraoperative features: machine learning applications in outpatients undergoing esophagogastroduodenoscopy

Autor: Zhaojing Fang, Daizun Zou, Weigen Xiong, Hongguang Bao, Xiuxiu Zhao, Chen Chen, Yanna Si, Jianjun Zou
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Annals of Medicine, Vol 55, Iss 1, Pp 1156-1167 (2023)
Druh dokumentu: article
ISSN: 07853890
1365-2060
0785-3890
DOI: 10.1080/07853890.2023.2187878
Popis: AbstractBackground Hypoxemia often occurs in outpatients undergoing anesthesia-assisted esophagogastroduodenoscopy (EGD). However, there is a scarcity in tools to predict the hypoxemia risk. We aimed to solve this problem by developing and validating machine learning (ML) models based on preoperative and intraoperative features.Methods All data were retrospectively collected from June 2021 to February 2022. The most appropriate predictive features were selected by the least absolute shrinkage and selection operator, which were incorporated and modelled by 4 ML algorithms. The area under the precision-recall curve (AUPRC) was used as the main evaluation metric to select the best models, and the selected models were compared with the STOP-BANG score. Their predictive performance was visually interpreted by SHapley Additive exPlanations. The primary endpoint of this study was hypoxemia during the procedure, defined as at least one reading of pulse oximetry < 90% without probes misplacement from the anesthesia induction beginning to the end of EGD, while the secondary endpoint was hypoxemia during induction, from the induction beginning to the start of endoscopic intubation.Results Of 1160 patients in the derivation cohort, 112 patients (9.6%) developed intraoperative hypoxemia, of which 102 (8.8%) occurred during the induction period. In temporal and external validation, no matter whether based on preoperative variables or still based on preoperative plus intraoperative variables, our models showed excellent predictive performance for the two endpoints, significantly better than STOP-BANG score. In the model interpretation section, preoperative variables (airway assessment indicators, pulse oximeter oxygen saturation and BMI) and intraoperative variables (the induced propofol dose) made the highest contribution to the predictions.Conclusions To our knowledge, our ML models were the first to predict hypoxemia risk, which achieved excellent overall predictive ability integrating various clinical indicators. These models have the potential to become an effective tool for adjusting sedation strategies flexibly and reducing the workload of anesthesiologists.KEY MESSAGESThis study is the first model employing ML methods based on preoperative and preoperative plus intraoperative variables for predicting the risk of hypoxemia during induction and the whole EGD procedure respectively.Our four models achieved satisfactory predictive performance and outperformed STOP-BANG score in terms of AUPRC in the temporal and external validation cohorts respectively.We found that the relevant variables of airway assessment should be fully taken into account when analyzing the risk factor of hypoxemia, and the effect of patients’ age on their hypoxemia risk should be considered in conjunction with the propofol dose.
Databáze: Directory of Open Access Journals