Autor: |
Zhanye Ling, Huawei Zhang, Yingjin Chen, Leqiang Sun, Junlong Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Vaccines, Vol 11, Iss 11, p 1692 (2023) |
Druh dokumentu: |
article |
ISSN: |
2076-393X |
DOI: |
10.3390/vaccines11111692 |
Popis: |
Porcine parvovirus 1 (PPV1) is one of the most prevalent pathogens that can cause reproductive disorder in sows. The VP2 protein of PPV1 is the most important immunogenic protein that induces neutralizing antibodies and protective immunity. Thus, VP2 is considered an ideal target antigen for the development of a genetically engineered PPV1 vaccine. In this study, the baculovirus transfer vector carrying the HR5-P10-VP2 expression cassette was successfully constructed with the aim of increasing the expression levels of the VP2 protein. The VP2 protein was confirmed using SDS‒PAGE and Western blot analyses. Electronic microscope analysis showed that the recombinant VP2 proteins were capable of self-assembling into VLPs with a diameter of approximately 25 nm. The immunogenicity of the VP2 subunit vaccine was evaluated in pigs. The results showed that VP2 protein emulsified with ISA 201VG adjuvant induced higher levels of HI antibodies and neutralizing antibodies than VP2 protein emulsified with IMS 1313VG adjuvant. Furthermore, the gilts immunized with the ISA 201VG 20 μg subunit vaccine acquired complete protection against PPV1 HN2019 infection. In contrast, the commercial inactivated vaccine provided incomplete protection in gilts. Therefore, the VP2 subunit vaccine is a promising genetically engineered vaccine for the prevention and control of PPV1. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|