Artificial Ecosystem-Based Optimization with Dwarf Mongoose Optimization for Feature Selection and Global Optimization Problems

Autor: Ibrahim Al-Shourbaji, Pramod Kachare, Sajid Fadlelseed, Abdoh Jabbari, Abdelazim G. Hussien, Faisal Al-Saqqar, Laith Abualigah, Abdalla Alameen
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: International Journal of Computational Intelligence Systems, Vol 16, Iss 1, Pp 1-24 (2023)
Druh dokumentu: article
ISSN: 1875-6883
DOI: 10.1007/s44196-023-00279-6
Popis: Abstract Meta-Heuristic (MH) algorithms have recently proven successful in a broad range of applications because of their strong capabilities in picking the optimal features and removing redundant and irrelevant features. Artificial Ecosystem-based Optimization (AEO) shows extraordinary ability in the exploration stage and poor exploitation because of its stochastic nature. Dwarf Mongoose Optimization Algorithm (DMOA) is a recent MH algorithm showing a high exploitation capability. This paper proposes AEO-DMOA Feature Selection (FS) by integrating AEO and DMOA to develop an efficient FS algorithm with a better equilibrium between exploration and exploitation. The performance of the AEO-DMOA is investigated on seven datasets from different domains and a collection of twenty-eight global optimization functions, eighteen CEC2017, and ten CEC2019 benchmark functions. Comparative study and statistical analysis demonstrate that AEO-DMOA gives competitive results and is statistically significant compared to other popular MH approaches. The benchmark function results also indicate enhanced performance in high-dimensional search space.
Databáze: Directory of Open Access Journals