Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1,h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems

Autor: Abdullah Ali H. Ahmadini, Waqar Afzal, Mujahid Abbas, Elkhateeb S. Aly
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 3, p 382 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12030382
Popis: This note introduces a new class of preinvexity called (h1,h2)-Godunova-Levin preinvex functions that generalize earlier findings. Based on these notions, we developed Hermite-Hadamard, weighted Fejér, and trapezium type inequalities. Furthermore, we constructed some non-trivial examples in order to verify all the developed results. In addition, we discussed some applications related to the trapezoidal formula, probability density functions, special functions and special means. Lastly, we discussed the importance of order relations and left two open problems for future research. As an additional benefit, we believe that the present work can provide a strong catalyst for enhancing similar existing literature.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje