Autor: |
Yangjun Wu, Xiansong Xu, Dario Poletti, Yi Fan, Chu Guo, Honghui Shang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 11, Iss 6, p 1417 (2023) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math11061417 |
Popis: |
The restricted Boltzmann machine (RBM) has recently been demonstrated as a useful tool to solve the quantum many-body problems. In this work we propose tanh-FCN, which is a single-layer fully connected neural network adapted from RBM, to study ab initio quantum chemistry problems. Our contribution is two-fold: (1) our neural network only uses real numbers to represent the real electronic wave function, while we obtain comparable precision to RBM for various prototypical molecules; (2) we show that the knowledge of the Hartree-Fock reference state can be used to systematically accelerate the convergence of the variational Monte Carlo algorithm as well as to increase the precision of the final energy. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|