Deep Learning Based Fire Risk Detection on Construction Sites

Autor: Hojune Ann, Ki Young Koo
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors, Vol 23, Iss 22, p 9095 (2023)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s23229095
Popis: The recent large-scale fire incidents on construction sites in South Korea have highlighted the need for computer vision technology to detect fire risks before an actual occurrence of fire. This study developed a proactive fire risk detection system by detecting the coexistence of an ignition source (sparks) and a combustible material (urethane foam or Styrofoam) using object detection on images from a surveillance camera. Statistical analysis was carried out on fire incidences on construction sites in South Korea to provide insight into the cause of the large-scale fire incidents. Labeling approaches were discussed to improve the performance of the object detectors for sparks and urethane foams. Detecting ignition sources and combustible materials at a distance was discussed in order to improve the performance for long-distance objects. Two candidate deep learning models, Yolov5 and EfficientDet, were compared in their performance. It was found that Yolov5 showed slightly higher mAP performances: Yolov5 models showed mAPs from 87% to 90% and EfficientDet models showed mAPs from 82% to 87%, depending on the complexity of the model. However, Yolov5 showed distinctive advantages over EfficientDet in terms of easiness and speed of learning.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje