Autor: |
Monica Canton, Silvia Farinati, Cristian Forestan, Justin Joseph, Claudio Bonghi, Serena Varotto |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Plant Methods, Vol 18, Iss 1, Pp 1-13 (2022) |
Druh dokumentu: |
article |
ISSN: |
1746-4811 |
DOI: |
10.1186/s13007-022-00876-0 |
Popis: |
Abstract Background Perennial fruit trees display a growth behaviour characterized by annual cycling between growth and dormancy, with complex physiological features. Rosaceae fruit trees represent excellent models for studying not only the fruit growth/patterning but also the progression of the reproductive cycle depending upon the impact of climate conditions. Additionally, current developments in high‐throughput technologies have impacted Rosaceae tree research while investigating genome structure and function as well as (epi)genetic mechanisms involved in important developmental and environmental response processes during fruit tree growth. Among epigenetic mechanisms, chromatin remodelling mediated by histone modifications and other chromatin-related processes play a crucial role in gene modulation, controlling gene expression. Chromatin immunoprecipitation is an effective technique to investigate chromatin dynamics in plants. This technique is generally applied for studies on chromatin states and enrichment of post-transcriptional modifications (PTMs) in histone proteins. Results Peach is considered a model organism among climacteric fruits in the Rosaceae family for studies on bud formation, dormancy, and organ differentiation. In our work, we have primarily established specific protocols for chromatin extraction and immunoprecipitation in reproductive tissues of peach (Prunus persica). Subsequently, we focused our investigations on the role of two chromatin marks, namely the trimethylation of histone H3 at lysine in position 4 (H3K4me3) and trimethylation of histone H3 at lysine 27 (H3K27me3) in modulating specific gene expression. Bud dormancy and fruit growth were investigated in a nectarine genotype called Fantasia as our model system. Conclusions We present general strategies to optimize ChIP protocols for buds and mesocarp tissues of peach and analyze the correlation between gene expression and chromatin mark enrichment/depletion. The procedures proposed may be useful to evaluate any involvement of histone modifications in the regulation of gene expression during bud dormancy progression and core ripening in fruits. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|