The existence of subdigraphs with orthogonal factorizations in digraphs
Autor: | Sizhong Zhou, Quanru Pan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | AIMS Mathematics, Vol 6, Iss 2, Pp 1223-1233 (2021) |
Druh dokumentu: | article |
ISSN: | 2473-6988 |
DOI: | 10.3934/math.2021075/fulltext.html |
Popis: | Let $G$ be a $[0,k_1+k_2+\cdots+k_m-n+1]$-digraph and $H_1,H_2,\cdots,H_r$ be $r$ vertex-disjoint $n$-subdigraphs of $G$, where $m,n,r$ and $k_i$ ($1\leq i\leq m$) are positive integers satisfying $1\leq n\leq m$ and $k_1\geq k_2\geq\cdots\geq k_m\geq r+1$. In this article, we verify that there exists a subdigraph $R$ of $G$ such that $R$ possesses a $[0,k_i]_1^{n}$-factorization orthogonal to every $H_i$ for $1\leq i\leq r$. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |