A Stability Study by Routh-Hurwitz Criterion and Gershgorin Circles for Covid-19
Autor: | Bedia Akyar, Ayse Kara Hansen, Sultan Selcuk Sutlu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Modeling, Identification and Control, Vol 45, Iss 3, Pp 97-103 (2024) |
Druh dokumentu: | article |
ISSN: | 0332-7353 1890-1328 |
DOI: | 10.4173/mic.2024.3.2 |
Popis: | In this paper, we study stabilization problem on a model for covid-19 by using Routh-Hurwitz criterion and Gershgorin circles. Using Routh-Hurwitz criterion, we prove the necessity of unstability and stability conditions for the model that we extend from an existing one. We give the necessary conditions for stability on this model by using the Gershgorin Circle Theorem and give examples. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |