Cryptanalysis of an RSA variant with moduli N=prql
Autor: | Lu Yao, Peng Liqiang, Sarkar Santanu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Journal of Mathematical Cryptology, Vol 11, Iss 2, Pp 117-130 (2017) |
Druh dokumentu: | article |
ISSN: | 1862-2976 1862-2984 |
DOI: | 10.1515/jmc-2016-0025 |
Popis: | In this paper we study an RSA variant with moduli of the form N=prql{N=p^{r}q^{l}} (r>l≥2{r>l\geq 2}). This variant was mentioned by Boneh, Durfee and Howgrave-Graham [2]. Later Lim, Kim, Yie and Lee [11] showed that this variant is much faster than the standard RSA moduli in the step of decryption procedure. There are two proposals of RSA variants when N=prql{N=p^{r}q^{l}}. In the first proposal, the encryption exponent e and the decryption exponent d satisfy ed≡1modpr-1ql-1(p-1)(q-1)ed\equiv 1\bmod p^{r-1}q^{l-1}(p-1)(q-1), whereas in the second proposal ed≡1mod(p-1)(q-1)ed\equiv 1\bmod(p-1)(q-1). We prove that for the first case if d |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |