Pell Even Sum Cordial Labeling of Graphs
Autor: | Christina Mercy, T Tamizh Chelvam |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Ratio Mathematica, Vol 45, Iss 0 (2023) |
Druh dokumentu: | article |
ISSN: | 1592-7415 2282-8214 |
DOI: | 10.23755/rm.v45i0.1034 |
Popis: | LetG=(V,E) be a simple graph and let P_i be Pell numbers. For a bijectionf:V\left(G\right)\rightarrow{P_0,\ P_1,\ldots,P_{\left|V\right|-1}}, assign the label 1 for the edge e=uv if f\left(u\right)+f(v) is even and label 0 otherwise. Then f is said to be a Pell even sum cordial labeling of G if \left|e_f(0)-e_f(1)\right|\le1 where e_f(0) and e_f(1) denote the number of edges labeled with 0 and 1 respectively. If any graph admits Pell even sum cordial labeling, it is called Pell even sum cordial graph. In this study, we show that star, comb, bistar, jewel, crown, bipartite graph K_{m,m},\ flower graph, helm, wheel, triangular book, K_2+mK_1 are Pell even sum cordial. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |