Supersulphides provide airway protection in viral and chronic lung diseases

Autor: Tetsuro Matsunaga, Hirohito Sano, Katsuya Takita, Masanobu Morita, Shun Yamanaka, Tomohiro Ichikawa, Tadahisa Numakura, Tomoaki Ida, Minkyung Jung, Seiryo Ogata, Sunghyeon Yoon, Naoya Fujino, Yorihiko Kyogoku, Yusaku Sasaki, Akira Koarai, Tsutomu Tamada, Atsuhiko Toyama, Takakazu Nakabayashi, Lisa Kageyama, Shigeru Kyuwa, Kenji Inaba, Satoshi Watanabe, Péter Nagy, Tomohiro Sawa, Hiroyuki Oshiumi, Masakazu Ichinose, Mitsuhiro Yamada, Hisatoshi Sugiura, Fan-Yan Wei, Hozumi Motohashi, Takaaki Akaike
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-25 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-40182-4
Popis: Abstract Supersulphides are inorganic and organic sulphides with sulphur catenation with diverse physiological functions. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulphide synthase (CPERS). Here, we identify protective functions of supersulphides in viral airway infections (influenza and COVID-19), in aged lungs and in chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF). We develop a method for breath supersulphur-omics and demonstrate that levels of exhaled supersulphides increase in people with COVID-19 infection and in a hamster model of SARS-CoV-2 infection. Lung damage and subsequent lethality that result from oxidative stress and inflammation in mouse models of COPD, IPF, and ageing were mitigated by endogenous supersulphides production by CARS2/CPERS or exogenous administration of the supersulphide donor glutathione trisulphide. We revealed a protective role of supersulphides in airways with various viral or chronic insults and demonstrated the potential of targeting supersulphides in lung disease.
Databáze: Directory of Open Access Journals