Autor: |
Thanawan Prahadchai, Yonggwan Shin, Piyapatr Busababodhin, Jeong‐Soo Park |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Atmospheric Science Letters, Vol 24, Iss 4, Pp n/a-n/a (2023) |
Druh dokumentu: |
article |
ISSN: |
1530-261X |
DOI: |
10.1002/asl.1145 |
Popis: |
Abstract Non‐stationarity in heavy rainfall time series is often apparent in the form of trends because of long‐term climate changes. We have built non‐stationary (NS) models for annual maximum daily (AMP1) and 2‐day precipitation (AMP2) data observed between 1984 and 2020 years by 71 stations and between 1960 and 2020 by eight stations over Thailand. The generalized extreme value (GEV) models are used. Totally, 16 time‐dependent functions of the location and scale parameters of the GEV model are considered. On each station, a model is selected by using Bayesian and Akaike information criteria among these candidates. The return levels corresponding to some years are calculated and predicted for the future. The stations with the highest return levels are Trad, Samui, and Narathiwat, for both AMP1 and AMP2 data. We found some evidence of increasing (decreasing) trends in maximum precipitation for 22 (10) stations in Thailand, based on NS GEV models. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|