Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C

Autor: Zhaoyu Lin, Fei Liu, Peiliang Shi, Anying Song, Zan Huang, Dayuan Zou, Qin Chen, Jianxin Li, Xiang Gao
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Stem Cell Research & Therapy, Vol 9, Iss 1, Pp 1-14 (2018)
Druh dokumentu: article
ISSN: 1757-6512
DOI: 10.1186/s13287-018-0792-6
Popis: Abstract Background Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Methods Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography–mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. Results We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. Conclusion We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje