Peaked and Smooth Solitons for K*(4,1) Equation
Autor: | Yongan Xie, Hualiang Fu, Shengqiang Tang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Journal of Applied Mathematics, Vol 2013 (2013) |
Druh dokumentu: | article |
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2013/518415 |
Popis: | This paper is contributed to explore all possible single peak solutions for the K*(4,1) equation ut=uxu2+2α(uuxxx+2uxuxx). Our procedure shows that the K*(4,1) equation either has peakon, cuspon, and smooth soliton solutions when sitting on a nonzero constant pedestal limξ→±∞u=A≠0 or possesses compacton solutions only when limξ→±∞u=A=0. We present a new smooth soliton solution in an explicit form. Mathematical analysis and numeric graphs are provided for those soliton solutions of the K*(4,1) equation. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |