Autor: |
Yuzhen Tan |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-14 (2020) |
Druh dokumentu: |
article |
ISSN: |
1029-242X |
DOI: |
10.1186/s13660-020-02417-6 |
Popis: |
Abstract In this paper, we obtain a Bernstein-type concentration inequality and McDiarmid’s inequality under upper probabilities for exponential independent random variables. Compared with the classical result, our inequalities are investigated under a family of probability measures, rather than one probability measure. As applications, the convergence rates of the law of large numbers and the Marcinkiewicz–Zygmund-type law of large numbers about the random variables in upper expectation spaces are obtained. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|