Autor: |
Julian P. Sefrin, Lars Hillringhaus, Olaf Mundigl, Karin Mann, Doris Ziegler-Landesberger, Heike Seul, Gloria Tabares, Dominic Knoblauch, Andreas Leinenbach, Irene Friligou, Sebastian Dziadek, Rienk Offringa, Valeria Lifke, Alexander Lifke |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Frontiers in Immunology, Vol 10 (2019) |
Druh dokumentu: |
article |
ISSN: |
1664-3224 |
DOI: |
10.3389/fimmu.2019.01962 |
Popis: |
Anti-tumor immunity is limited by a number of factors including the lack of fully activated T-cells, insufficient antigenic stimulation and the immune-suppressive tumor microenvironment. We addressed these hurdles by developing a novel class of immunoconjugates, Antibody-Targeted Pathogen-derived Peptides (ATPPs), which were designed to efficiently deliver viral T-cell epitopes to tumors with the aim of redirecting virus-specific memory T-cells against the tumor. ATPPs were generated through covalent binding of mature MHC class I peptides to antibodies specific for cell surface-expressed tumor antigens that mediate immunoconjugate internalization. By means of a cleavable linker, the peptides are released in the endosomal compartment, from which they are loaded into MHC class I without the need for further processing. Pulsing of tumor cells with ATPPs was found to sensitize these for recognition by virus-specific CD8+ T-cells with much greater efficiency than exogenous loading with free peptides. Systemic injection of ATPPs into tumor-bearing mice enhanced the recruitment of virus-specific T-cells into the tumor and, when combined with immune checkpoint blockade, suppressed tumor growth. Our data thereby demonstrate the potential of ATPPs as a means of kick-starting the immune response against “cold” tumors and increasing the efficacy of checkpoint inhibitors. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|