Autor: |
Vanessa L. Breton, Mark S. Aquilino, Srinivasarao Repudi, Afifa Saleem, Shanthini Mylvaganam, Sara Abu-Swai, Berj L. Bardakjian, Rami I. Aqeilan, Peter L. Carlen |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Neurobiology of Disease, Vol 160, Iss , Pp 105529- (2021) |
Druh dokumentu: |
article |
ISSN: |
1095-953X |
DOI: |
10.1016/j.nbd.2021.105529 |
Popis: |
Summary: Loss of function mutations of the WW domain-containing oxidoreductase (WWOX) gene are associated with severe and fatal drug-resistant pediatric epileptic encephalopathy. Epileptic seizures are typically characterized by neuronal hyperexcitability; however, the specific contribution of WWOX to that hyperexcitability has yet to be investigated. Using a mouse model of neuronal Wwox-deletion that exhibit spontaneous seizures, in vitro whole-cell and field potential electrophysiological characterization identified spontaneous bursting activity in the neocortex, a marker of the underlying network hyperexcitability. Spectral analysis of the neocortical bursting events highlighted increased phase-amplitude coupling, and a propagation from layer II/III to layer V. These bursts were NMDAR and gap junction dependent. In layer II/III pyramidal neurons, Wwox knockout mice demonstrated elevated amplitude of excitatory post-synaptic currents, whereas the frequency and amplitude of inhibitory post-synaptic currents were reduced, as compared to heterozygote and wild-type littermate controls. Furthermore, these neurons were depolarized and demonstrated increased action potential frequency, sag current, and post-inhibitory rebound. These findings suggest WWOX plays an essential role in balancing neocortical excitability and provide insight towards developing therapeutics for those suffering from WWOX disorders. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|