Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators

Autor: Kejal Khatri, Vishnu Narayan Mishra
Jazyk: English<br />Portuguese
Rok vydání: 2022
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 40 (2022)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.52003
Popis: In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with shifted knots for construction of modified Chlodowsky B\'{e}zier curves. We study the nature of degree elevation and degree reduction for B\'{e}zier Bernstein-Stancu-Chlodowsky functions with shifted knots for $t \in [\frac{\gamma}{n+\delta},\frac{n+\gamma}{n+\delta}]$. We also present a de Casteljau algorithm to compute Bernstein B\'{e}zier curves with shifted knots. The new curves have some properties similar to B\'{e}zier curves. Furthermore, some fundamental properties for Bernstein B\'{e}zier curves are discussed. Our generalizations show more flexibility in taking the value of $\gamma$ and $\delta$ and advantage in shape control of curves. The shape parameters give more convenience for the curve modelling.
Databáze: Directory of Open Access Journals