Autor: |
Minxian Wang, Mengting Sun, Yao Yu, Xinsheng Li, Yongkui Ren, Da Yin |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
BMC Medical Informatics and Decision Making, Vol 23, Iss 1, Pp 1-11 (2023) |
Druh dokumentu: |
article |
ISSN: |
1472-6947 |
DOI: |
10.1186/s12911-023-02352-8 |
Popis: |
Abstract Background The addition of coronary artery calcium score (CACS) to prediction models has been verified to improve performance. Machine learning (ML) algorithms become important medical tools in an era of precision medicine, However, combined utility by CACS and ML algorithms in hypertensive patients to forecast obstructive coronary artery disease (CAD) on coronary computed tomography angiography (CCTA) is rare. Methods This retrospective study was composed of 1,273 individuals with hypertension and without a history of CAD, who underwent dual-source computed tomography evaluation. We applied five ML algorithms, coupled with clinical factors, imaging parameters, and CACS to construct predictive models. Moreover, 80% individuals were randomly taken as a training set on which 5-fold cross-validation was done and the remaining 20% were regarded as a validation set. Results 16.7% (212 out of 1,273) of hypertensive patients had obstructive CAD. Extreme Gradient Boosting (XGBoost) posted the biggest area under the receiver operator characteristic curve (AUC) of 0.83 in five ML algorithms. Continuous net reclassification improvement (NRI) was 0.55 (95% CI (0.39–0.71), p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|