CORPORATE FINANCIAL DISTRESS PREDICTION USING STATISTICAL EXTREME VALUE-BASED MODELING AND MACHINE LEARNING

Autor: Dedy Dwi Prastyo, Rizki Nanda Savera, Danny Hermawan Adiwibowo
Jazyk: English<br />Indonesian
Rok vydání: 2023
Předmět:
Zdroj: Media Statistika, Vol 16, Iss 1, Pp 1-12 (2023)
Druh dokumentu: article
ISSN: 1979-3693
2477-0647
DOI: 10.14710/medstat.16.1.1-12
Popis: The industrial sector plays a leading role in an economy such that the financial stability of companies from this sector be a big concern. Two financial ratios, i.e., the Interest Coverage Ratio (ICR) and the Return on Assets (ROA), are used to determine the corporate financial distress conditions. This work considers two schemes for determining financial distress. First, a company is categorized as distressed if either ICR
Databáze: Directory of Open Access Journals