Decision Support Systems to Selection of Diet Type Using Fuzzy Sugeno and Naïve Bayes Method

Autor: Youllia Indrawaty Nurhasanah, Asep Nana Hermana, Mahesa Arga Hutama
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: IJAIT (International Journal of Applied Information Technology), Vol 1, Iss 02, Pp 115-127 (2017)
Druh dokumentu: article
ISSN: 2581-1223
DOI: 10.25124/ijait.v1i02.894
Popis: Sugeno Fuzzy algorithm is one of the algorithms contained on Fuzzy Inference System, that used to describe the condition between the two pieces of the decisions represented in the form of rules IF - THEN, where the output is constant or linear equations. While the Naive Bayes algorithm is an algorithm that uses data classification to a particular class based on the probability of each data class. Both of these algorithms can be implemented on a Decision Support System (DSS) for diet selection, using Fuzzy Sugeno as an additional determinant of energy and Naive Bayes method as decision maker. This is because the need for food intake and diet has become a problem for humans. To prevent excess intake of food it needs dietary adjustments or so-called diet. But in daily life, people sometimes hard to determine the type of diet that is suitable for them. So we need a system that can determine the type of diet that is suitable for a person. The data that used as a reference for decision support are age, daily caloric requirement, Body Mass Index (BMI), blood pressure, cholesterol, uric acid and blood sugar levels. Results of system testing showed from a sample of 30 data there are 26 appropriate data and 4 inappropriate data to determine the type of diet by the system with the success rate of 86.7%.
Databáze: Directory of Open Access Journals