Popis: |
Open-path Fourier Transform infrared spectroscopy (OP-FTIR) is widely used in polluted gas monitoring. The spectral resolution, as a key parameter of FTIR detection technology, affects the quantitative analysis of gas concentration. In OP-FTIR, the nonlinear least square (NLLS) method based on a synthetic background spectrum is used to quantitatively analyze the gas concentration, and the influence of the spectral resolution is studied. It is found that the influence of the spectral resolution on quantitative gas analysis is related to the full width at half maximum (FWHM) of the gas spectrum. The concentration of gases with different spectral FWHMs were quantitatively analyzed using infrared spectra with different resolutions (1, 2, 4, 8, 16 cm−1). The experimental results show that the relatively optimal spectral resolution for propane (C3H8) with a broad FWHM is 16 cm−1, where the standard deviation is 0.661 and the Allan deviation is only 0.015; the relatively optimal spectral resolution for ethylene (C2H4) with a narrow FWHM is 1 cm−1, where the standard deviation is 0.492 and the Allan deviation is only 0.256. Therefore, for the NLLS quantitative analysis method based on the synthetic background spectrum, which is used in OP-FTIR, gas with a narrow FWHM at high resolutions or gas with a broad FWHM at low resolutions is most effective for performing quantitative analyses. |