Coefficient Estimates for a Subclass of Analytic Functions Associated with a Certain Leaf-Like Domain

Autor: Bilal Khan, Hari M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tahir, Qazi Zahoor Ahmad
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics, Vol 8, Iss 8, p 1334 (2020)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math8081334
Popis: First, by making use of the concept of basic (or q-) calculus, as well as the principle of subordination between analytic functions, generalization Rq(h) of the class R(h) of analytic functions, which are associated with the leaf-like domain in the open unit disk U, is given. Then, the coefficient estimates, the Fekete–Szegö problem, and the second-order Hankel determinant H2(1) for functions belonging to this class Rq(h) are investigated. Furthermore, similar results are examined and presented for the functions zf(z) and f−1(z). For the validity of our results, relevant connections with those in earlier works are also pointed out.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje