Autor: |
Anup Tank, Cameron Vergato, David J. Waxman, Darren Roblyer |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-9 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-09671-2 |
Popis: |
Abstract Spatial Frequency Domain Imaging (SFDI) can provide longitudinal, label-free, and widefield hemodynamic and scattering measurements of murine tumors in vivo. Our previous work has shown that the reduced scattering coefficient (μ′s) at 800 nm, as well as the wavelength dependence of scattering, both have prognostic value in tracking apoptosis and proliferation during treatment with anti-cancer therapies. However, there is limited work in validating these optical biomarkers in clinically relevant tumor models that manifest specific treatment resistance mechanisms that mimic the clinical setting. It was recently demonstrated that metronomic dosing of cyclophosphamide induces a strong anti-tumor immune response and tumor volume reduction in the E0771 murine breast cancer model. This immune activation mechanism can be blocked with an IFNAR-1 antibody, leading to treatment resistance. Here we present a longitudinal study utilizing SFDI to monitor this paired responsive-resistant model for up to 30 days of drug treatment. Mice receiving the immune modulatory metronomic cyclophosphamide schedule had a significant increase in tumor optical scattering compared to mice receiving cyclophosphamide in combination with the IFNAR-1 antibody (9% increase vs 10% decrease on day 5 of treatment, p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|