A two-step randomized Gauss-Seidel method for solving large-scale linear least squares problems

Autor: Yimou Liao, Tianxiu Lu, Feng Yin
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Electronic Research Archive, Vol 30, Iss 2, Pp 755-779 (2022)
Druh dokumentu: article
ISSN: 2688-1594
DOI: 10.3934/era.2022040?viewType=HTML
Popis: A two-step randomized Gauss-Seidel (TRGS) method is presented for large linear least squares problem with tall and narrow coefficient matrix. The TRGS method projects the approximate solution onto the solution space by given two random columns and is proved to be convergent when the coefficient matrix is of full rank. Several numerical examples show the effectiveness of the TRGS method among all methods compared.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje