Autor: |
WEI Yanbin, WANG Yalei, XIONG Xiang, YE Zhiyong, LIU Zaidong |
Jazyk: |
čínština |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Cailiao gongcheng, Vol 52, Iss 10, Pp 127-138 (2024) |
Druh dokumentu: |
article |
ISSN: |
1001-4381 |
DOI: |
10.11868/j.issn.1001-4381.2023.000659 |
Popis: |
C/C-SiC composites were prepared by chemical vapor infiltration (CVI) and reactive melt infiltration (RMI) using carbon fiber preforms with stitched and needle-punched structures. The microstructure and pore characteristics of C/C porous composites obtained from the two structural preforms, as well as the microstructure and flexural properties of C/C-SiC composites, were systematically studied. Results show that the pore size of stitched C/C porous composite is multimodal distribution, and the pores are mostly inter-bundle pores. The pore size of needle-punched C/C porous composite is unimodal distribution. Due to the addition of mesh, some inter-bundle pores are transformed into connected small pore networks. The simulated absolute permeability in the Z direction of the latter is slightly greater than that of the former, which is conducive to the subsequent RMI densification process of the latter (high density, low open-porosity and low residual metal). The average flexural strength of stitched C/C-SiC composites is higher than that of needle-punched C/C-SiC composites, both of which exhibit a “pseudo plastic” fracture mode. The needle-punched C/C-SiC composite has a higher density and lower residual Si content, but its fiber volume content is lower, and the integrity of long straight fibers is poor, resulting in lower load-bearing property of the composite. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|