Autor: |
Woosung Jeon, Dongsup Kim |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 10, Iss 1, Pp 1-11 (2020) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-020-78537-2 |
Popis: |
Abstract We developed a computational method named Molecule Optimization by Reinforcement Learning and Docking (MORLD) that automatically generates and optimizes lead compounds by combining reinforcement learning and docking to develop predicted novel inhibitors. This model requires only a target protein structure and directly modifies ligand structures to obtain higher predicted binding affinity for the target protein without any other training data. Using MORLD, we were able to generate potential novel inhibitors against discoidin domain receptor 1 kinase (DDR1) in less than 2 days on a moderate computer. We also demonstrated MORLD’s ability to generate predicted novel agonists for the D4 dopamine receptor (D4DR) from scratch without virtual screening on an ultra large compound library. The free web server is available at http://morld.kaist.ac.kr . |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|