Popis: |
Array-based optical sensing is an efficient technique for the determination and discrimination of small organic molecules. This study is aimed at the development of a simple and rapid strategy for obtaining an optical response from a wide range of low-molecular-weight organic compounds. We have suggested a colorimetric and fluorimetric sensing platform based on the combination of two response mechanisms using carbocyanine dyes: aggregation and oxidation. In the first one, the analyte forms ternary aggregates with an oppositely charged surfactant wherein the dye is solubilized in the hydrophobic domains of the surfactant accompanied with fluorescent enhancement. The second mechanism is based on the effect of the analyte on the catalytic reaction rate of dye oxidation with H2O2 in the presence of a metal ion (Cu2+, Pd2+), which entails fluorescence waning and color change. The reaction mixture in a 96-well plate is photographed in visible light (colorimetry) and the near-IR region under red light excitation (fluorimetry). In this proof-of-concept study, we demonstrated the feasibility of discrimination of nine medicinal compounds using principal component analysis: four cephalosporins (ceftriaxone, cefazolin, ceftazidime, cefotaxime), three phenothiazines (promethazine, promazine, chlorpromazine), and two penicillins (benzylpenicillin, ampicillin) in an aqueous solution and in the presence of turkey meat extract. The suggested platform allows simple and rapid recognition of analytes of various nature without using spectral equipment, except for a photo camera. |