The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution
Autor: | H. M. Srivastava, Sheza M. El-Deeb |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
analytic functions
univalent functions bieberbach conjecture (de branges theorem) carathéodory lemma faber polynomial expansion bi-close-to-convex functions convolution of analytic functions q-derivative (or q-difference) operator q-convolution poisson operator and pascal distribution operator Mathematics QA1-939 |
Zdroj: | AIMS Mathematics, Vol 5, Iss 6, Pp 7087-7106 (2020) |
Druh dokumentu: | article |
ISSN: | 2473-6988 |
DOI: | 10.3934/math.2020454/fulltext.html |
Popis: | In this paper, we introduce a new class of analytic and bi-close-to-convex functions connected with q-convolution, which are defined in the open unit disk. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this subclass by using the Faber polynomial expansion method. Several corollaries and consequences of our main results are also briefly indicated. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |