Autor: |
P. Naga Srinivasu, G. Jaya Lakshmi, Abhishek Gudipalli, Sujatha Canavoy Narahari, Jana Shafi, Marcin Woźniak, Muhammad Fazal Ijaz |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-19 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-79620-8 |
Popis: |
Abstract Early diagnosis of breast cancer is exceptionally important in signifying the treatment results, of women’s health. The present study outlines a novel approach for analyzing breast cancer data by using the CatBoost classification model with a multi-layer perceptron neural network (CatBoost+MLP). Explainable artificial intelligence techniques are used to cohere with the proposed CatBoost with the MLP model. The proposed model aims to enhance the interpretability of predictions in breast cancer diagnosis by leveraging the benefits of CatBoost classification technique in feature identification and also contributing towards the interpretability of the decision model. The proposed CatBoost+MLP has been evaluated using the Shapley additive explanations values to analyze the feature significance in decision-making. Initially, the feature engineering is done using the analysis of variance technique to identify the significant features. The MLP model alone and the CatBoost+MLP model are being analyzed using divergent performance metrics, and the results obtained are compared with contemporary breast cancer identification techniques. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|