Modeling the monkeypox infection using the Mittag–Leffler kernel

Autor: Khan Muhammad Altaf, Meetei Mutum Zico, Shah Kamal, Abdeljawad Thabet, Alshahrani Mohammad Y.
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Open Physics, Vol 21, Iss 1, Pp 297-307 (2023)
Druh dokumentu: article
ISSN: 2391-5471
DOI: 10.1515/phys-2023-0111
Popis: This article presents the mathematical formulation for the monkeypox infection using the Mittag–Leffler kernel. A detailed mathematical formulation of the fractional-order Atangana-Baleanu derivative is given. The existence and uniqueness results of the fractional-order system is established. The local asymptotical stability for the disease-free case, when ℛ01{{\mathcal{ {\mathcal R} }}}_{0}\gt 1. The backward bifurcation analysis for fractional system is shown. The authors give a numerical scheme, solve the model, and present the results graphically. Some graphical results are shown for disease curtailing in the USA.
Databáze: Directory of Open Access Journals