Autor: |
Oren S. Mizrahi, Mohammadreza F. Imani, Jonah N. Gollub, David R. Smith |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 8, Pp 36829-36835 (2020) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2020.2974441 |
Popis: |
We demonstrate that dynamic metasurface apertures (DMAs) are capable of generating a multitude of highly uncorrelated speckle patterns in a typical residential environment at a single frequency. We use a DMA implemented as an electrically-large cavity excited by a single port and loaded with many individually-addressable tunable metamaterial radiators. We placed such a DMA in one corner of a plywood-walled L-shape room transmitting microwave signals at 19 GHz as we changed the tuning states of the metamaterial radiators. In another corner, in the non-line-of-sight of the DMA, we conducted a scan of the field generated by the DMA. For comparison, we also performed a similar test where the DMA was replaced by a simple dipole antenna with fixed pattern but generating a signal that spanned 19 - 24GHz. Using singular value decomposition of the scanned data, we demonstrate that the DMA can generate a multitude of highly uncorrelated speckle patterns at a single frequency. In contrast, a dipole antenna with a fixed pattern can only generate such a highly uncorrelated set of patterns when operating over a large bandwidth. The experimental results of this paper suggest that DMAs can be used to capture a diversity of information at a single frequency which can be used for single frequency computational imaging systems, NLOS motion detection, gesture recognition systems, and more. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|