On the lower bound of Spearman’s footrule

Autor: Fuchs Sebastian, McCord Yann
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Dependence Modeling, Vol 7, Iss 1, Pp 126-132 (2019)
Druh dokumentu: article
ISSN: 2300-2298
DOI: 10.1515/demo-2019-0005
Popis: Úbeda-Flores showed that the range of multivariate Spearman’s footrule for copulas of dimension d ≥ 2 is contained in the interval [−1/d, 1], that the upper bound is attained exclusively by the upper Fréchet-Hoeffding bound, and that the lower bound is sharp in the case where d = 2. The present paper provides characterizations of the copulas attaining the lower bound of multivariate Spearman’s footrule in terms of the copula measure but also via the copula’s diagonal section.
Databáze: Directory of Open Access Journals