Autor: |
Abir Yamak, Dongjian Hu, Nikhil Mittal, Jan W. Buikema, Sheraz Ditta, Pierre G. Lutz, Christel Moog-Lutz, Patrick T. Ellinor, Ibrahim J. Domian |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
iScience, Vol 23, Iss 3, Pp - (2020) |
Druh dokumentu: |
article |
ISSN: |
2589-0042 |
DOI: |
10.1016/j.isci.2020.100959 |
Popis: |
Summary: Defining the pathways that control cardiac development facilitates understanding the pathogenesis of congenital heart disease. Herein, we identify enrichment of a Cullin5 Ub ligase key subunit, Asb2, in myocardial progenitors and differentiated cardiomyocytes. Using two conditional murine knockouts, Nkx+/Cre.Asb2fl/fl and AHF-Cre.Asb2fl/fl, and tissue clarifying technique, we reveal Asb2 requirement for embryonic survival and complete heart looping. Deletion of Asb2 results in upregulation of its target Filamin A (Flna), and concurrent Flna deletion partially rescues embryonic lethality. Conditional AHF-Cre.Asb2 knockouts harboring one Flna allele have double outlet right ventricle (DORV), which is rescued by biallelic Flna excision. Transcriptomic and immunofluorescence analyses identify Tgfβ/Smad as downstream targets of Asb2/Flna. Finally, using CRISPR/Cas9 genome editing, we demonstrate Asb2 requirement for human cardiomyocyte differentiation suggesting a conserved mechanism between mice and humans. Collectively, our study provides deeper mechanistic understanding of the role of the ubiquitin proteasome system in cardiac development and suggests a previously unidentified murine model for DORV. : Biological Sciences; Molecular Biology; Developmental Biology Subject Areas: Biological Sciences, Molecular Biology, Developmental Biology |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|