Characterization of a Human In Vitro Intestinal Model for the Hazard Assessment of Nanomaterials Used in Cancer Immunotherapy

Autor: Matthew Gibb, Sahar H. Pradhan, Marina R. Mulenos, Henry Lujan, James Liu, James D. Ede, Jo Anne Shatkin, Christie M. Sayes
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Applied Sciences, Vol 11, Iss 5, p 2113 (2021)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app11052113
Popis: There is momentum in biomedical research to improve the structure and function of in vitro intestinal models that better represent human biology. To build a more comprehensive model, three human cell-types were co-cultured and characterized: i.e., HT29-MTX (intestinal mucous-producing goblet cells), Caco-2 (colon epithelial cells), and Raji B (lymphocytes). Raji B cells transformed a subpopulation of Caco-2 epithelial cells into phagocytic and transcytotic immune-supporting microfold cells (M-cells). A suite of bioassays was implemented to investigate steady-state barrier integrity and cellular communication. The model demonstrated a potentiating effect in metabolism and pro-inflammatory markers. Barrier integrity and cell seeding density seem to play a role in the reliability of endpoint readouts. Microscopic analysis elucidated the importance of multi-cell biomimicry. The data show that monocultures do not have the same characteristics inherent to triple cell culture models. Multiple cell types in an in vitro model produce a better representation of an intact organ and aid in the ability to assess immunomodulatory effects of nanomaterials designed for cancer theranostics after ingestion. As many national and international agencies have stressed, there is a critical need to improve alternative-to-animal strategies for pharmaceuticals in an effort to reduce animal testing.
Databáze: Directory of Open Access Journals