Autor: |
Houssem Jerbi, Sondess Ben Aoun, Mohamed Omri, Theodore E. Simos, Charalampos Tsitouras |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 10, Iss 5, p 827 (2022) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math10050827 |
Popis: |
We analyze a set of explicit Runge–Kutta pairs of orders six and five that share no extra properties, e.g., long intervals of periodicity or vanishing phase-lag etc. This family of pairs provides five parameters from which one can freely pick. Here, we use a Neural Network-like approach where these coefficients are trained on a couple of model periodic problems. The aim of this training is to produce a pair that furnishes best results after using certain intervals and tolerance. Then we see that this pair performs very well on a wide range of problems with periodic solutions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|