Autor: |
Chaofeng Zhang, Rong Hu |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-14 (2020) |
Druh dokumentu: |
article |
ISSN: |
1687-2770 |
DOI: |
10.1186/s13661-020-01385-6 |
Popis: |
Abstract In this paper, we develop optimal Phragmén–Lindelöf methods, based on the use of maximum modulus of optimal value of a parameter in a Schrödinger functional, by applying the Phragmén–Lindelöf theorem for a second-order boundary value problems with respect to the Schrödinger operator. Using it, it is possible to find the existence of ground state solutions of the generalized Schrödinger equation with optimal control. In spite of the fact that the equation of this type can exhibit non-uniqueness of weak solutions, we prove that the corresponding Phragmén–Lindelöf method, under suitable assumptions on control conditions of the nonlinear term, is well-posed and admits a nonempty set of solutions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|