Autor: |
Uroš Čibej, Luka Fürst, Jurij Mihelič |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 11, Iss 10, p 1300 (2019) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym11101300 |
Popis: |
We introduce a new equivalence on graphs, defined by its symmetry-breaking capability. We first present a framework for various backtracking search algorithms, in which the equivalence is used to prune the search tree. Subsequently, we define the equivalence and an optimization problem with the goal of finding an equivalence partition with the highest pruning potential. We also position the optimization problem into the computational-complexity hierarchy. In particular, we show that the verifier lies between P and NP -complete problems. Striving for a practical usability of the approach, we devise a heuristic method for general graphs and optimal algorithms for trees and cycles. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|