Informed classification of sweeteners/bitterants compounds via explainable machine learning

Autor: Gabriele Maroni, Lorenzo Pallante, Giacomo Di Benedetto, Marco A. Deriu, Dario Piga, Gianvito Grasso
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Current Research in Food Science, Vol 5, Iss , Pp 2270-2280 (2022)
Druh dokumentu: article
ISSN: 2665-9271
DOI: 10.1016/j.crfs.2022.11.014
Popis: Perception of taste is an emergent phenomenon arising from complex molecular interactions between chemical compounds and specific taste receptors. Among all the taste perceptions, the dichotomy of sweet and bitter tastes has been the subject of several machine learning studies for classification purposes. While previous studies have provided accurate sweeteners/bitterants classifiers, there is ample scope to enhance these models by enriching the understanding of the molecular basis of bitter-sweet tastes. Towards these goals, our study focuses on the development and testing of several machine learning strategies coupled with the novel SHapley Additive exPlanations (SHAP) for a rational sweetness/bitterness classification. This allows the identification of the chemical descriptors of interest by allowing a more informed approach toward the rational design and screening of sweeteners/bitterants. To support future research in this field, we make all datasets and machine learning models publicly available and present an easy-to-use code for bitter-sweet taste prediction.
Databáze: Directory of Open Access Journals