Radial Expansion Favors the Burrowing Behavior of Urechis unicinctus

Autor: Shanpeng Li, Yun Zhang, Ruihua Zhang, Jianlin Liu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Applied Bionics and Biomechanics, Vol 2023 (2023)
Druh dokumentu: article
ISSN: 1754-2103
DOI: 10.1155/2023/2478606
Popis: Urechis unicinctus can utilize the ability of large deformation to advance in sands by radial expansion, just using a small force. However, the large deformation of U. unicinctus skin and the discrete nature of the sands make it hard to analyze this process quantitatively. In this study, we aim to uncover the burrowing mechanism of U. unicinctus in granular sediments by combining discrete and finite elements. We observe that U. unicinctus will expand radially at the head, and then the head will shrink to move forward. The radial expansion will collapse the sands and let them flow, making it easy to advance. U. unicinctus mainly relies on the skin’s large deformation and sufficient pressure to achieve radial expansion. Thus, we first establish the large deformation constitutive model of the skin. The stress–strain relationship can be expressed by the Yeoh model. Meanwhile, the pressure required for radial expansion is indirectly measured by the balloon experiment. To study the effect of radial expansion on the burrowing behavior, we use the finite element method–discrete element method (FEM–DEM) coupling model to simulate the expansion process of burrowing. The simulated pressure for radial expansion is very close to the experimental data, verifying the reliability of the simulation. The results show that the expansion can drastically reduce the pressure of sand particles on the head front face by 97.1% ± 0.6%, significantly decreasing the difficulty of burrowing. This unique underwater burrow method of U. unicinctus can provide new ideas for engineering burrowing devices in soft soil, especially for granular sediments.
Databáze: Directory of Open Access Journals