Popis: |
The COVID-19 pandemic poses a threat to global health. Due to its high sensitivity, specificity, and stability, real-time fluorescence quantitative (real-time PCR) detection has become the most extensively used approach for diagnosing SARS-CoV-2 pneumonia. According to a report from the World Health Organization, emerging and underdeveloped nations lack nucleic acid detection kits and polymerase chain reaction (PCR) instruments for molecular biological detection. In addition, sending samples to a laboratory for testing may result in considerable delays between sampling and diagnosis, which is not favorable to the timely prevention and control of new crown outbreaks. Concurrently, there is an urgent demand for accurate PCR devices that do not require a laboratory setting, are more portable, and are capable of completing testing on-site. Hence, we report on HDLRT-qPCR, a new, low-cost, multiplexed real-time fluorescence detection apparatus that we have developed for on-site testing investigations of diverse diseases in developing nations. This apparatus can complete on-site testing rapidly and sensitively. The entire cost of this instrument does not exceed USD 760. In order to demonstrate the applicability of our PCR instrument, we conducted testing that revealed that we achieved gradient amplification and melting curves comparable to those of commercially available equipment. Good consistency characterized the testing outcomes. The successful detection of target genes demonstrates the reliability of our inexpensive PCR diagnostic technique. With this apparatus, there is no need to transport samples to a central laboratory; instead, we conduct testing at the sampling site. This saves time on transportation, substantially accelerates overall testing speed, and provides results within 40 min. |