Predicting the failure of two-dimensional silica glasses

Autor: Francesc Font-Clos, Marco Zanchi, Stefan Hiemer, Silvia Bonfanti, Roberto Guerra, Michael Zaiser, Stefano Zapperi
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-30530-1
Popis: The sheer number of parameters in deep learning makes the physical interpretation of failure predictions in glasses challenging. Here the authors use Grad-CAM to reveal the role of topological defects and local potential energies in failure predictions.
Databáze: Directory of Open Access Journals