Autor: |
Francesc Font-Clos, Marco Zanchi, Stefan Hiemer, Silvia Bonfanti, Roberto Guerra, Michael Zaiser, Stefano Zapperi |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-022-30530-1 |
Popis: |
The sheer number of parameters in deep learning makes the physical interpretation of failure predictions in glasses challenging. Here the authors use Grad-CAM to reveal the role of topological defects and local potential energies in failure predictions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|